Workshop UCIBIO High-Throughput Sequencing Data

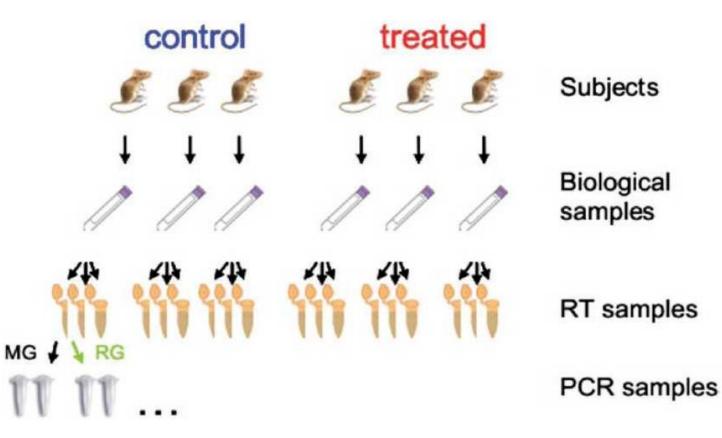
Ana Rita Grosso

argrosso@fct.unl.pt

September 12th 2022

Learning Objectives

- Know the essential concepts about High-Throughput Sequencing (HTS) technologies and analysis:
 - HTS technologies and applications;
 - HTS data repositories and analysis
- Perform HTS data analysis (hands-on):
 - Get HTS data from public repositories
 - Assess quality of HTS data
 - Alignment to the transcriptome
 - Alignment to the genome



How to measure gene expression (mRNA levels)?

QUANTITATIVE PCR (REAL-TIME)

A lot of work to measure few genes. Very accurate.

How to measure gene expression (mRNA levels)?

MICROARRAYS

Easier way to measure pre-defined genes in different samples. Robust.

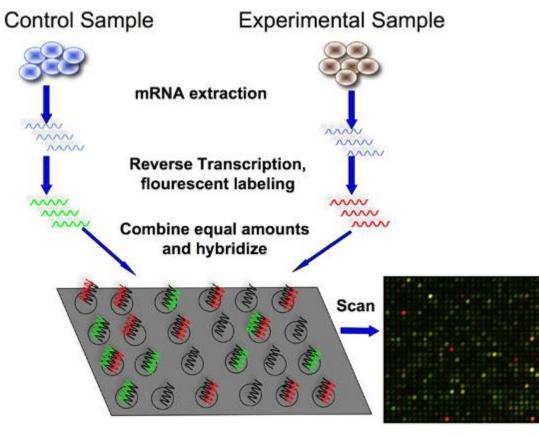
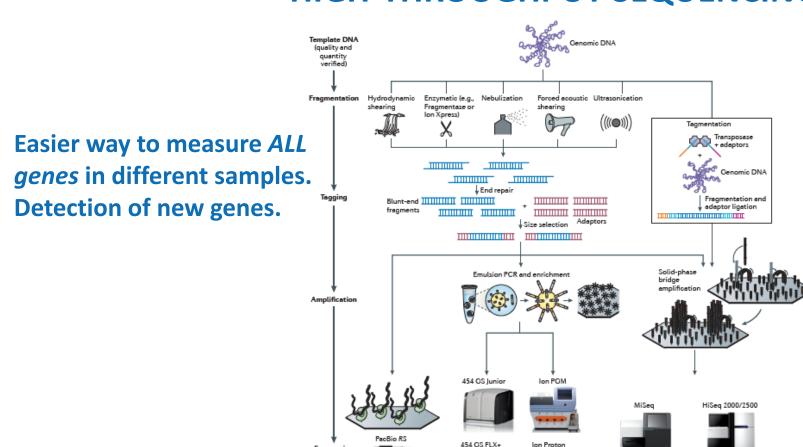



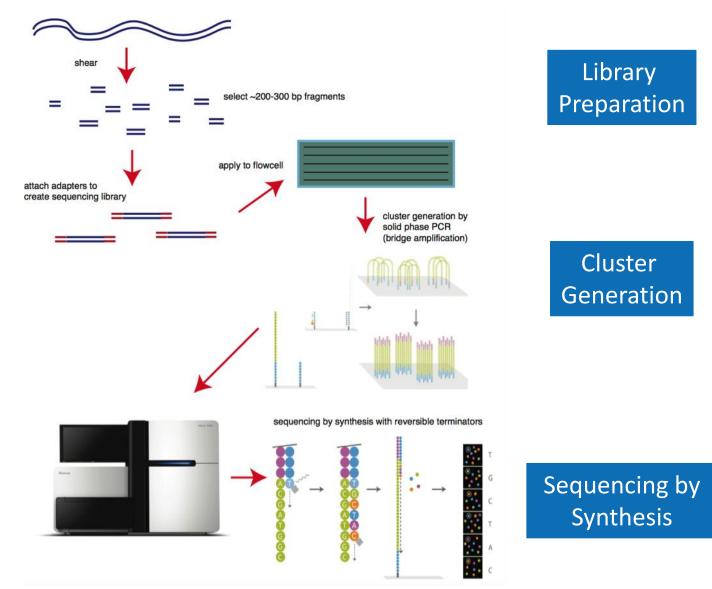
Image from https://www.gene-quantification.de

How to measure gene expression (mRNA levels)?

(© Pacific Biosciences)

Sequencing

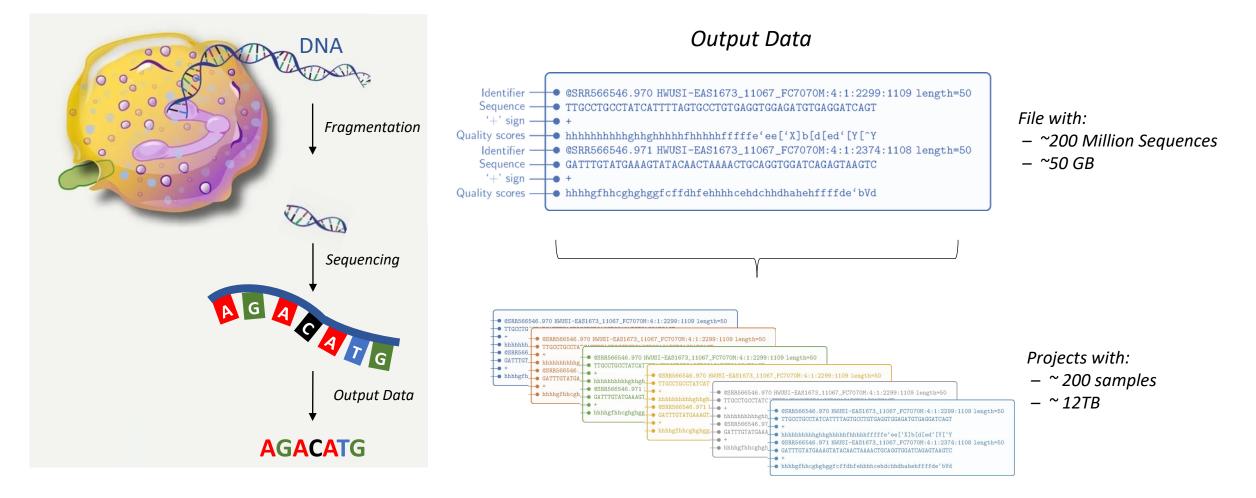
HIGH-THROUGHPUT SEQUENCING


(© Roche) (© Life Technologies) Loman et al (2012) Nat Rev Microb

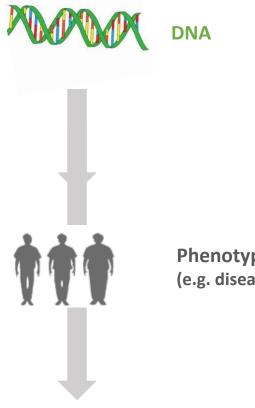
1

(© Illumina)

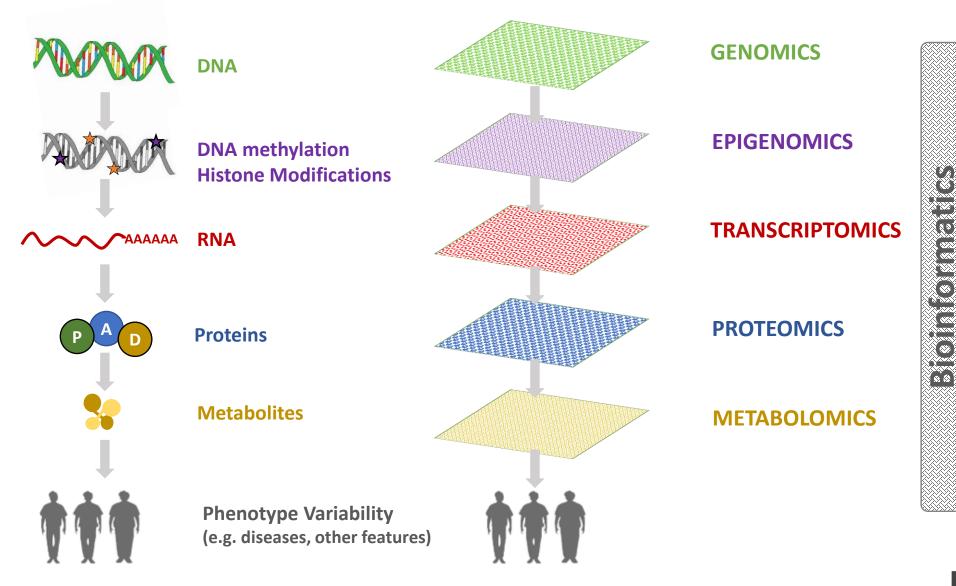
Illumina Sequencing



Video: https://www.youtube.com/watch?v=womKfikWlxM

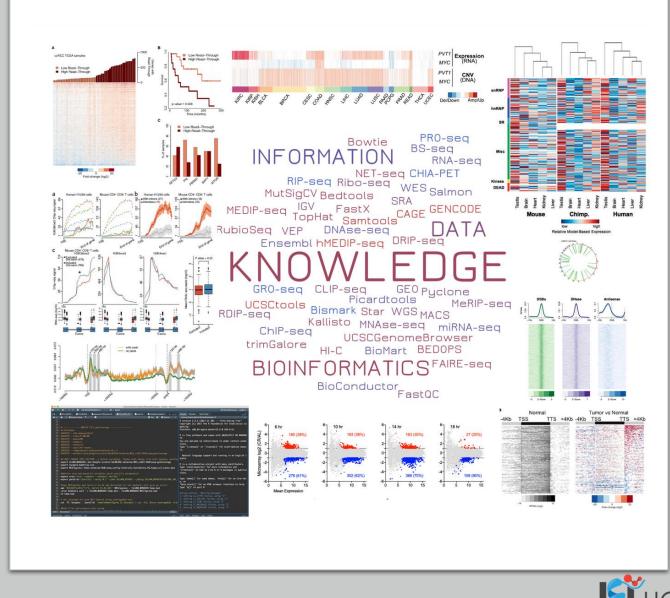

Big Data: Genomics

Integration of Multi-Omics Data

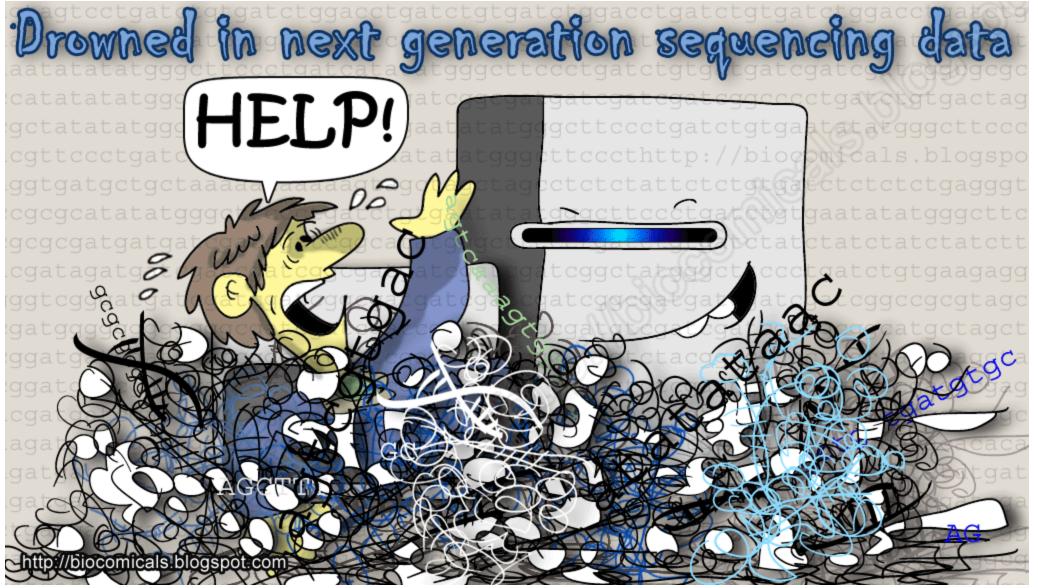


Phenotype Variability (e.g. diseases, other features)

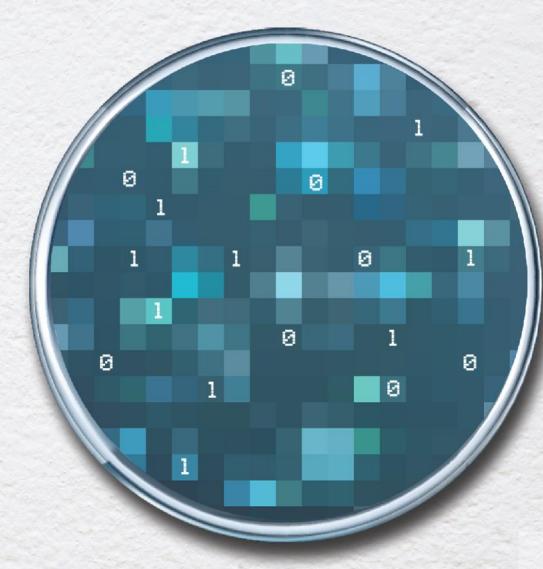
Integration of Multi-Omics Data



NOVA SCHOOL OF SCIENCE & TECHNOLOGY



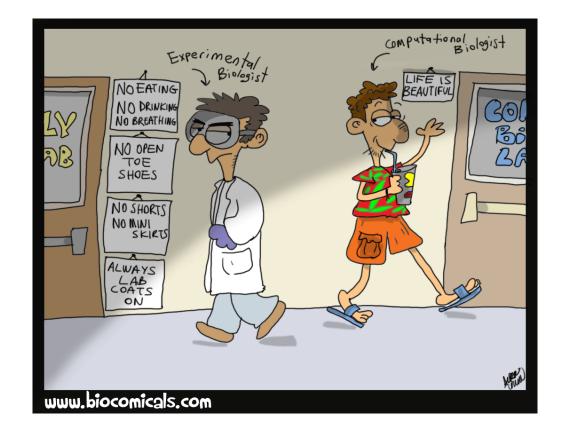
Generate scientific Knowledge by Mining Biological Data and extracting Information

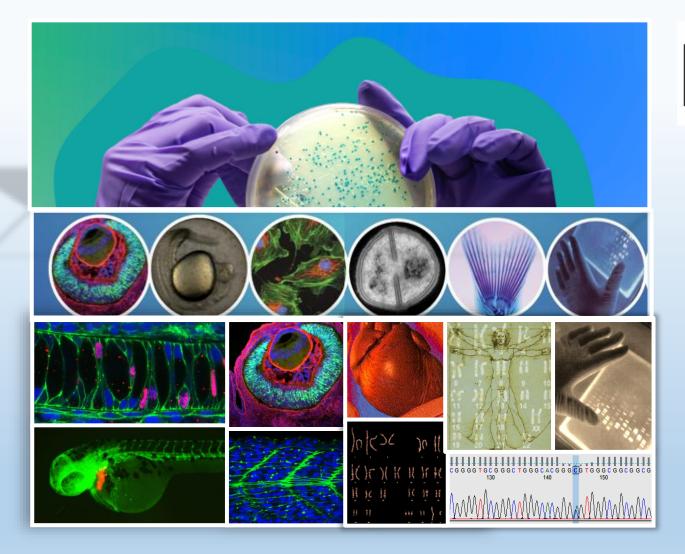


MCBBI NXVA UNIVERSIDADE NOVA DE LISBOA

Computational Biology & Bioinformatics

masters.unl.pt/computationalbiology



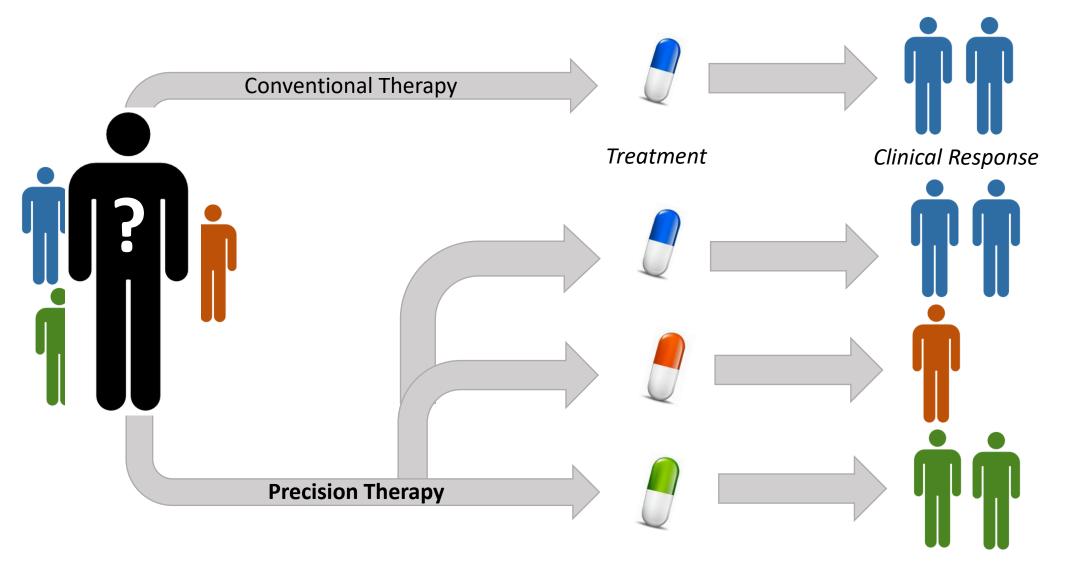

Science needs Experimental and Computational Biologists!!

Having both skills increases career opportunities!!

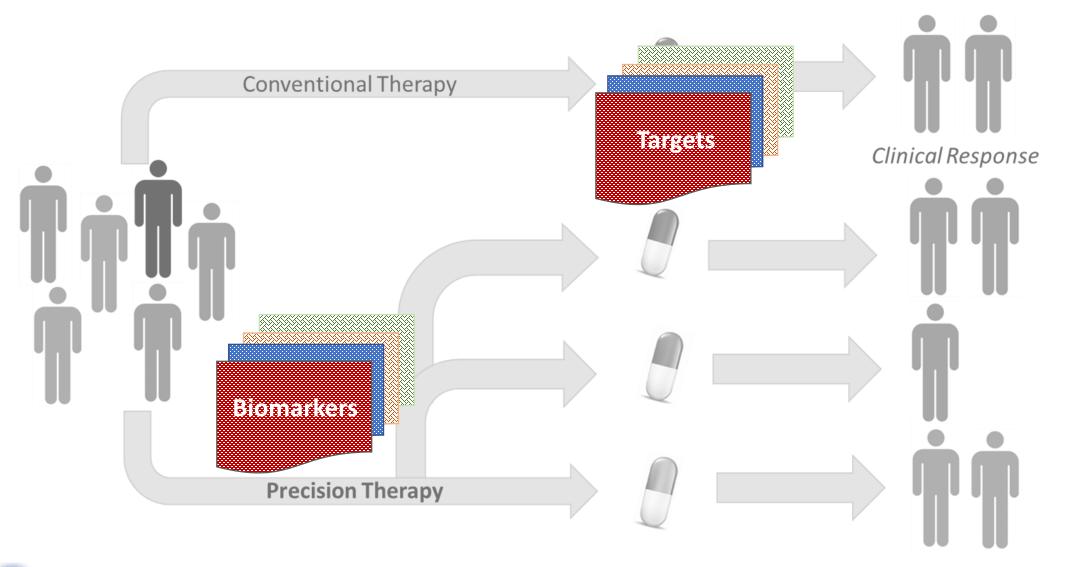

MSc in Molecular Genetics and Biomedicine

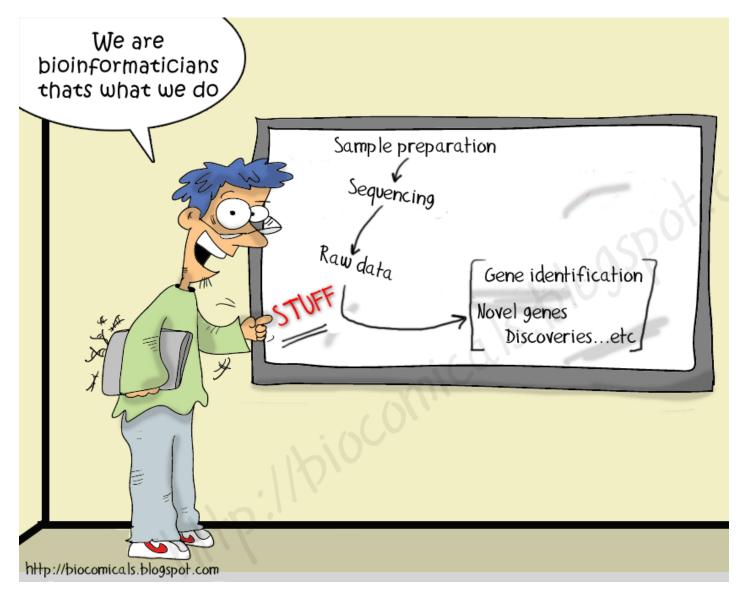
More information in https://www.fct.unl.pt/en/education/course/master-molecular-genetics-and-biomedicine

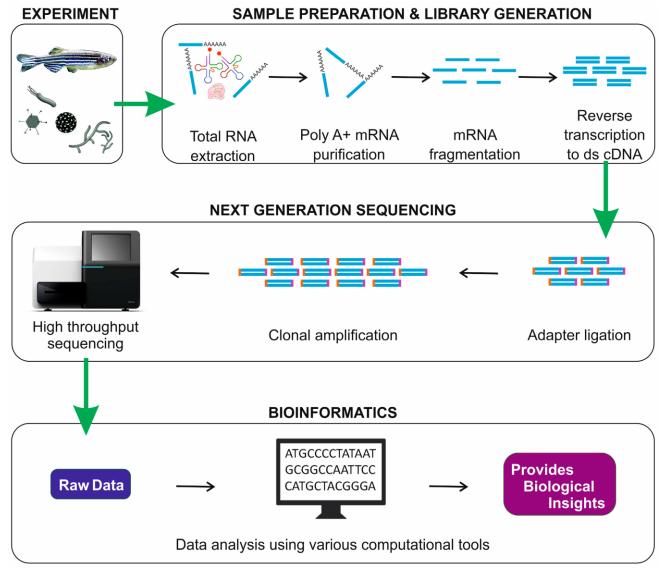
Biomedical Big-Data


NOVA SCHOOL OF SCIENCE & TECHNOLOGY

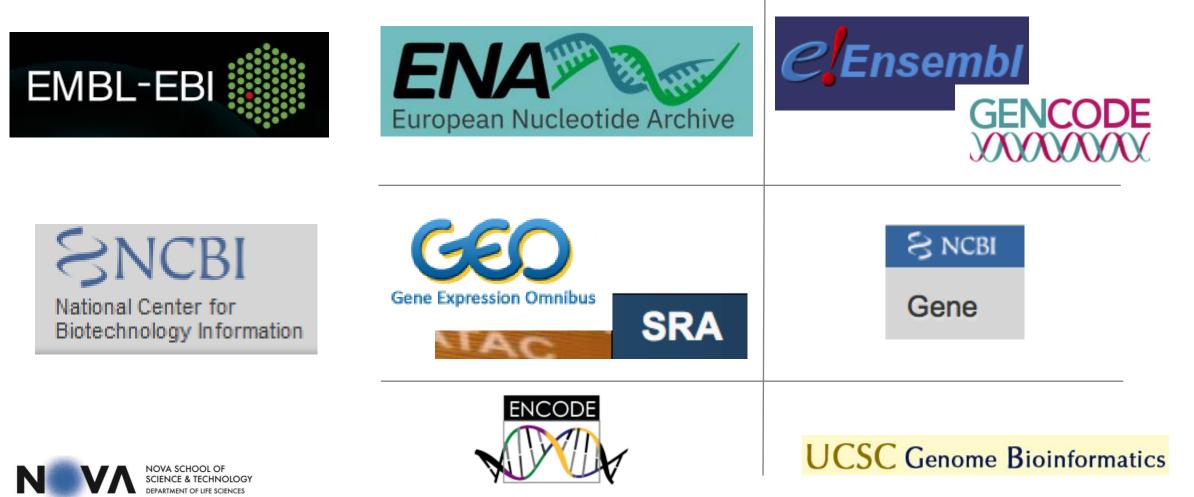
DEPARTMENT OF LIFE SCIENCES


Precision Medicine


Precision Medicine


High-throughput Sequencing Data Analysis

High-throughput RNA sequencing (RNA-seq)


Sudhagar et al (2018) Int J Mol Sci

HTS Data Analysis ğ Z **NCBI SRA** 1) Get raw data from SRA using **Raw Data SRA tools Quality Control** Alignment NOVA SCHOOL OF N

HTS Data Repositories

Sequencing Data (raw or analysed data) Genome Sequences and Annotations

HTS Data Repositories: SRA

Ν

OF LIFE SCIENCES

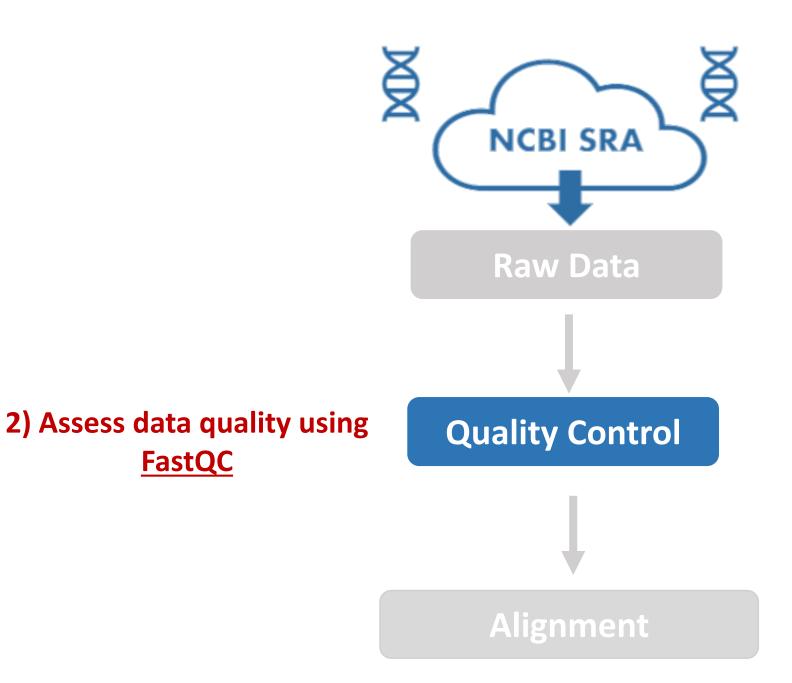
SRA	SRA v glioblastoma	⊗ Search	
	Create alert Advanced		Help
Access Controlled (479)	Summary - 20 per page - Send	to: - Filter your results:	
Public (15,304)	View results as an expanded interactive table using the RunSelector. Send results to Run selector	All (15787)	
Source	view results as an expanded interactive table using the RunSelector. Send results to Run selector	type_rnaseq_(12124)	
DNA (2,722)	Search results	access: Controlled (479)	
RNA (12,740)		access: Public (15304)	
Type exome (651)	Items: 1 to 20 of 15787 <<< First < Prev Page 1 of 790 Next > 1		
genome (150)		<u>source: DNA (2722)</u>	
Library Layout	Illumina NovaSeq 6000 paired end sequencing; Single cell RNA sequencing of three IDHwt	source: metagenomic (0)	
paired (11,281)	1. <u>glioblastoma patient tumors</u> Accession: ERX6426595	<u>source: RNA (12740)</u>	
single (4,506)		<u>type: exome (651)</u>	
Platform	Illumina NovaSeq 6000 paired end sequencing; Single cell RNA sequencing of three IDHwt	<u>type: genome (150)</u>	
ABI SOLID (36) BGISEQ (84)	2. <u>glioblastoma patient tumors</u> Accession: ERX6426594		Manage Filters
Complete Genomics (10)	ACCESSION. ERA0420094		
Helicos (3)	Illumina NovaSeq 6000 paired end sequencing; Single cell RNA sequencing of three IDHwt	Results by taxon	
Illumina (15,431) Ion Torrent (142)	3. <u>glioblastoma patient tumors</u>	Top Organisms [Tree]	
LS454 (40)	Accession: ERX6426593	Homo sapiens (13367) Mus musculus (2399)	
Oxford Nanopore (41)	GSM5589195: IR rep 3; Mus musculus; RNA-Seq	Canis lupus familiaris (12)	
Strategy	4. 1 ILLUMINA (NextSeq 500) run: 23.4M spots, 1.8G bases, 648Mb downloads	Rattus norvegicus (8) human metagenome (1)	
EpiGenomics (378) Exome (1,298)	Accession: SRX12261280	More	
Genome (151)	GSM5589194: IR rep 2; Mus musculus; RNA-Seq		
RNASeq (58)	 1 ILLUMINA (NextSeq 500) run: 23.9M spots, 1.8G bases, 663.9Mb downloads 	Top Bioprojects	
other (13,902)	Accession: SRX12261279	Production ENCODE functiona	 [(9)


HTS Data Repositories: SRA

NIH Nati	Dnal Library of Medicine	Lo	og in
SRA	SRA Advanced	Search	Help
Full → Design: Single cell RNA	Send to: - sequencing of three IDHwt glioblastoma patient tumors	Related information BioProject	
Study: Single cell RNA	in or Neurological Surgery washington onliversity in St. Louis (Department of Neurological Surgery washington onliv)	BioSample Taxonomy	
Selection: Oligo-dT	3p_GEX_CR3_p NovaSeq 6000 PTOMIC SINGLE CELL	Recent activity <u>Turn O</u> glioblastoma ERX6426595 (1) G glioblastoma ERX6426595 AND ("bid rna"[Properties]) (0)	SRA
Layout: PAIRED Construction protoco and Brain tumor dist Blood Cell lysis buff blue exclusion. Fres and red blood cells removed (MACS De	 glioblastoma ERX6426595 AND ("big rna"[Properties] AND "librar (0) glioblastoma AND ("biomol rna"[Prop AND "library layout pa (13583) glioblastoma AND ("biomol rna"[Prop 	iomol SRA perties] SRA	
(https://tinyurl.com/y	nics Chromium Controller and the Chromium Single Cell 3'V2 Library & Gel Bead Kit following the manufacturer's protocols opg2pfz). Dissociated tumor cells were processed using the 10x Genomics Chromium Controller and the Chromium Single el Bead Kit following the manufacturer's protocols (https://tinyurl.com/ybpg2pfz).	(17745)	sRA ee more

NOVA SCHOOL OF SCIENCE & TECHNOLO DEPARTMENT OF LIFE SCIENCE

Ν


Raw Data

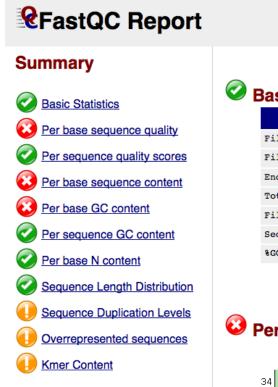
Hosseini et al (2016) Information

HTS Data Analysis

HTS Data Analysis – Quality Control

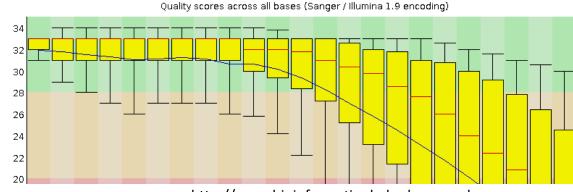
• HTS artefacts/problems:

- Sequence quality
- Nucleotide composition
- Technical issues
- Overrepresented sequences
- Adaptor sequence presence
- ...


More information in:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Data Quality Assessment FastQC Report



) E	Basic Statistic	S
	Measure	

Filename	SRR040000.sra_1.fastq				
File type	Conventional base calls				
Encoding	Sanger / Illumina 1.9				
Total Sequences	19756540				
Filtered Sequences	0				
Sequence length	76				
%GC	49				

Value

Per base sequence quality

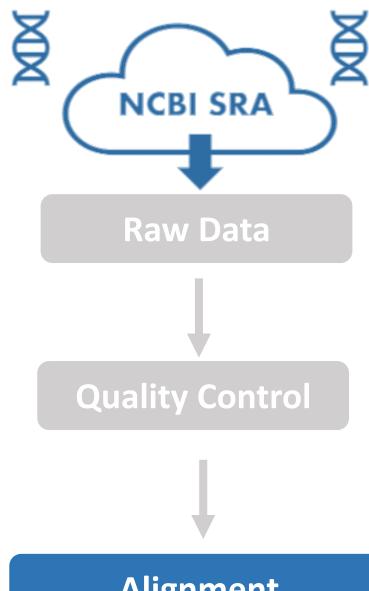
http://www.bioinformatics.babraham.ac.uk

Data Quality Assessment Per Base Sequence Quality

Bad Data

Quality scores across all bases (Sanger / Illumina 1.9 encoding) Quality scores across all bases (Illumina >v1.3 encoding) Ω 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 60-64 70-74 9 10-14 20-24 30-34 40-44 50-54 Position in read (bp) Position in read (bp)

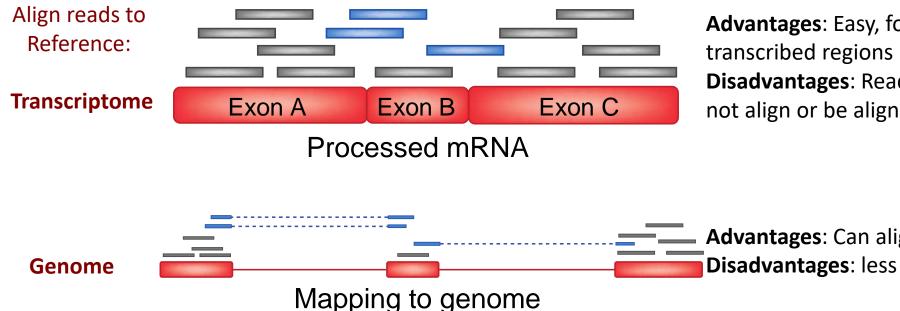
NOVA SCHOOL OF SCIENCE & TECHNOLOGY DEPARTMENT OF LIFE SCIENCES


http://www.bioinformatics.babraham.ac.uk

Good Data

HTS Data Analysis

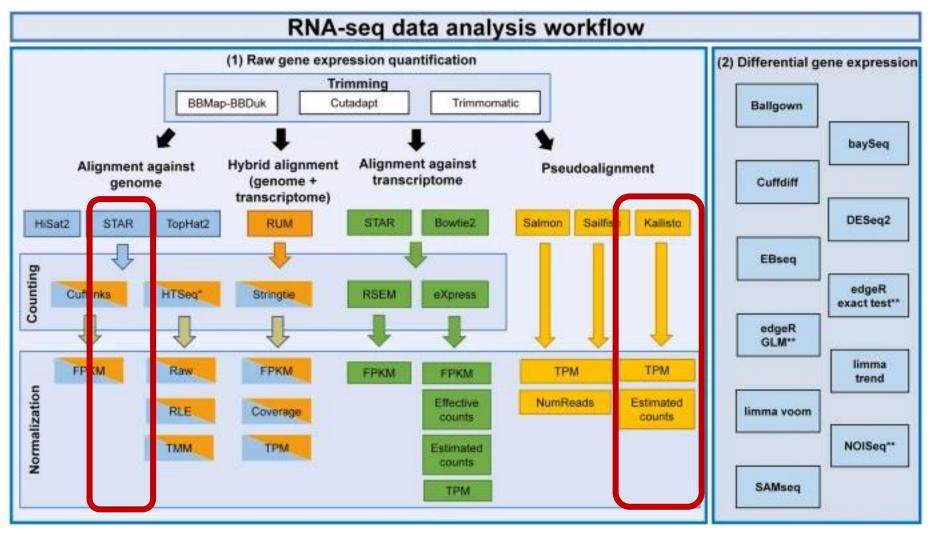
N


SCIENCE & TECHNOLOGY

3) Align data to transcriptome and genome (Kallisto and STAR)

Alignment

RNAseq Data Analysis Data Alignment: genome *versus* transcriptome


Advantages: Easy, focused on the known transcribed regions Disadvantages: Reads from novel isoforms may not align or be aligned to wrong isoform

Advantages: Can align novel isoforms
 Disadvantages: less time-efficient, spliced alignments

RNAseq Data Analysis

Bioinformatics Tools

Corchete et al (2020) Scientific Reports

RNAseq Data Analysis

Data Alignment: genome/transcriptome versions

Genome/Transcriptome Versions for most Vertebrates

Transcriptome and Gene annotations for Human and Mouse

The goal of the GENCODE project is to identify and classify all gene features in the human and mouse genomes with high accuracy based on biological evidence, and to release these annotations for the benefit of biomedical research and genome interpretation.

HTS Data Analysis – Transcriptome Alignment

Kallisto output (one file for each sample)

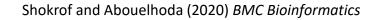
target_id	length	eff_leng	gth	est_cour	its	tpm
ENST00000513300	.5	1924	1746.98	102.328	11129.2	
ENST00000282507	.7	2355	2177.98	1592.02	138884	
ENST00000504685	.5	1476	1298.98	68.6528	10041.8	
ENST00000243108	.4	1733	1555.98	343.499	41944.9	
ENST00000303450	.4	1516	1338.98	664	94221.8	
ENST00000243082	.4	2039	1861.98	55	5612.36	
ENST00000303406	.4	1524	1346.98	304.189	42908.2	
ENST00000303460	.4	1936	1758.98	47	5076.85	
ENST00000243056	.4	2423	2245.98	42	3553.05	
ENST00000312492	. 2	1805	1627.98	228	26609.9	
ENST00000040584	.5	1889	1711.98	4295	476675	
ENST00000430889	. 2	1666	1488.98	623.628	79578.2	
ENST00000394331	.3	2943	2765.98	85.6842	5885.85	
ENST00000243103	.3	3335	3157.98	962	57879.3	

Estimated read counts

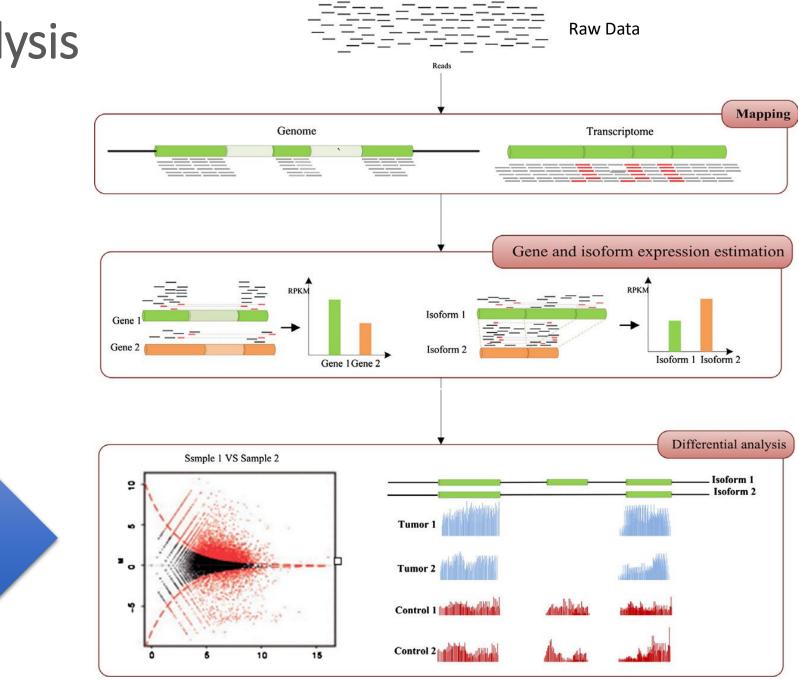
- Read counts for each transcript/sample
- Used in Differential expression analysis

Transcripts per Millions (TPMs)

- Normalized read counts
- Used in Exploratory analysis



HTS Data Analysis – Genome Alignment


Sequence Alignment/Map Format (SAM): a file format to represent alignments

AM file	SII	mpl	I				FI	ow	cycle			
TACAGCTAC	GT	ACGT	CTGAG	CAT	CGATO	GATO		CGT	CTGAGCATCGA	TCGA	IGIACAGCIACGIACGICIGAGCAIC	leader lin
ID			pos		CGAR		Sequence		Quality		Flow Signal	
3G8KR:02859		chr1	14725		192M		TCAGCTGCAAGT		@< 9=; ;9=<		ZM:B:s,266,-48,242,-12,-50,226,48,274,-56	
3G8KR:01234		chr1	14725		192M		TCAGCTGCAAGT		<;;;7<:;;8===<;		ZM:B:s,238,-14,260,-32,10,254,16,232,0,21	Read line
3G8KR:00083		chr1	14725		192M		TCAGCTGCAAGT		<==?9>===9<9		ZM:B:s,224,-10,244,-24,-10,246,-22,244,-2,15	
3G8KR:00315		chr1	14725		192M		TCAGCTGCAAGT		;;<=9?>==9=>>		ZM:B:s,272,-38,214,-22,-6,216,-2,284,-10,244	
3G8KR:01099		chr1	14725		192M		TCAGCTGCAAGT		;;==8<===8<;>		ZM:B:s,258,-50,244,-12,-4,234,2,224,-44,208,	
3G8KR:07971		chr1	14725		192M		TCAGCTGCAAGT		===>9>><<6<<		ZM:B:s,246, -10,272,-26,-2,248,8,250,-18,194	
3G8KR:01648		chr1	14725		192M		TCAGCTGCAAGT		=<<<9<<<=9=(ZM:B:s,248,-32,246,0,2,234,-20,246,-12,202,2	
3G8KR:02227		chr1	14725		192M		TCAGCTGCAAGT		<<;<6<;;<8;;<;[ZM:B:s,244,-44,244,0,-8,246,0,250,-10,222,24	
3G8KR:02263		chr1	14725		192M		TCAGCTGCAAGT		;<<<8;;;=8===<		ZM:B:s,278,-16,248,-40,4,230,-6,242,0,242,23	
		chr1	14725		192M		TCAGCTGCAAGT		<<<<6<:<		ZM:B:s,310,-21,250,44,14,224,-36,232,4,226,2	

HTS Data Analysis What's next?

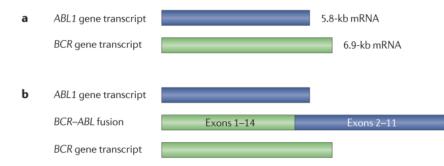
Next!!

NOVA SCHOOL OF SCIENCE & TECHNOLOGY DEPARTMENT OF LIFE SCIENCES

Feng et al (2012) Cancer Lett

CIBIO

HTS Data Analysis What's next?



MCBBi NXVA UNIVERSIDADE NOVA DE LISBOA

Majewski and Pastinen (2011) Trend in Genetics

HTS Data Analysis What's next?

Gene fusion

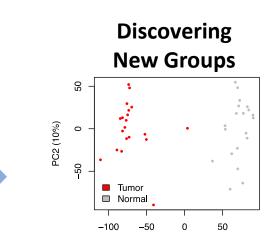
c	
GTCATCGTCCACTCAGCCACTGGATTTAAGCAGAGTTCAAATCTGTACTGCACCCTGGAGGTGGATTCCTTTGGGTATTTT	BCR
AGGCATGGGGGTCCACACTGCAATGTTTTTGTGGAACATGAAGCCCTTCAGCGGCCAGTAGCATCTGACTTTGAGCCTCAG	ABL1
stcatcgtccactcagccactggatttaagcagagttcaaaagcccttcagcggccagtagcatctgactttgagcctcag	BCR-ABL fusion transcript
STCAT-GTCCACTCAGC-ACTGGATT-AAGCAGAGTTCAAAAGC	
TCAT-GTCCACTCAGCCACTGGATTTAA-CAGAGTTCAAAAGC	
TCCACTCAGCCACTGGATTTAAGCAGAGTTCAAAAGCCC	
CCACTCAGCTACTGGATTTAAGCAGAGTTCAAAAGCCCTTCAGC	
CAGCCACTGGATTTAAGCAGAGTTCAAAAGCCCTTCAGC	
CAGCCA-TGGATTTAAGC-GAGTTCAAAAGCCCTTCAG	
AGCCACTGGATTTAAGCAGAGTTCAAAAG	
GCCACTGGATTTAAGCAGAGTTCAAAAGCCCT CACTGGATTTAAGCAGAGTTCAAAAGCCCTT	
CTGGATTTAAGCAGAGTTCAAAAGCTTCAGCGGC-AGTAG	
TG-ATTTAAGCAGAGTTCAALAGCCCTTCAGCGGCCAGTAGC	
ATTTAAGCAGAGTTCAALAGCCCTTCAGCG-CCAGTAGCA	
TTAAGCAGAGTTCAAAAGCCCTTCAGCGGCCAGTAGCATCTGACTTTGAG	
AGCAGAGT-CAAAAGCCCTTC-GCGGCCAGTAGCATCTGACTTTGA-C	
AT-A-AGTTCAAAAGCC-TTCAGCGGCCA-TAGCATCTG	
CAGAGTTCAAAAGCCCTTCAGCGGCCAG	
CAGAGTTCAAAAGCCCTTCAGCGGCCAGTAGCATCTGACTTTG	
AGTTCAAAAGCCCTTCAGCG-CCAGT-GCATCT	
GTTCAAAAGCCCTTCAGCGGCCAGTAGCATCTGACT	
TCAAA-GCCCT-C-GCGGCCAGTAGCATCTGAC	
AAAAGCCCTTCAG-GGCCAGTAGCATCTGACTTTGAG	

Ozsolak and Milos (2011) Nature Review Genetics

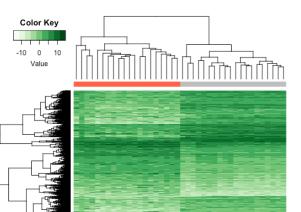
HTS Data Analysis What's next?

Transcriptome Profiles

_	TCGA.A3.3358.01 [‡]	TCGA.A3.3387.01 ‡	TCGA.B0.4700.01 [‡]	TCGA.B0.4712.01 \$	TCGA.B0.5402.01 [‡]	TCGA.B0.5690.01 [‡]
					1007.00.0402.01	
EEF1A1	13.98220636	13.8186912	12.863860	13.1913250	14.340716	13.0939714
GPX3	11.88457267	11.4090069	9.920329	10.0343242	14.340247	10.3229445
UMOD	1.80871422	-3.4935634	-0.565008	-1.3773438	-1.547451	-0.6272458
ALDOB	6.55599683	2.3503254	4.762704	-1.5762452	9.765960	5.7475390
ADAM6	12.72001691	11.1953384	12.814279	8.9573795	9.923689	8.2191920
CD74	13.09458021	13.0961807	13.943524	12.4496722	12.859715	12.1444018
SLC12A1	0.74457882	0.9017328	-1.463406	-3.2290709	-2.624186	-2.0981981
GAPDH	12.88927117	12.9062785	13.559814	13.9336383	12.702471	12.647775
ATP1A1	8.64132224	9.7491925	8.891576	9.5413563	8.870964	8.6871353
TGFBI	9.66085759	8.8838095	11.757477	12.3198370	10.664287	6.6940544
B2M	13.12708926	12.4926319	12.683055	11.4133982	12.249986	12.4608324
AQP2	-0.82454090	-4.2464002	-2.140967	-1.3734517	-3.238887	-2.0499339
VIM	12.31619343	12.0776191	12.769947	12.4948214	12.359648	12.5291941
RGS5	9.95871838	10.5353376	10.094421	8.9659204	10.474964	11.7380251
IGFBP3	11.42661141	12.8167620	11.217148	12.2316529	11.015955	12.4014856
FTL	13.75148593	12.9252368	14.057338	13.8082925	12.948375	12.4573550
TPT1	11.86833510	11.3236103	11.574811	11.4911512	12.129083	11.6050301
C3	10.38646612	10.6098185	8.839554	9.5241840	10.841007	7.7632210
SERPINA1	10.09616434	9.6421909	12.108501	12.5736856	10.142289	9.3116322
АСТВ	11.75074690	12.1532891	13.071242	12.8642593	11.187768	12.864285
SPARC	10.24885784	11.4576436	11.842904	11.2142744	11.449070	12.547383


30

25


15 20

10

0 5

PC1 (50%)

Depicting Significant Transcriptome Alterations

Log2 Fold Change

0

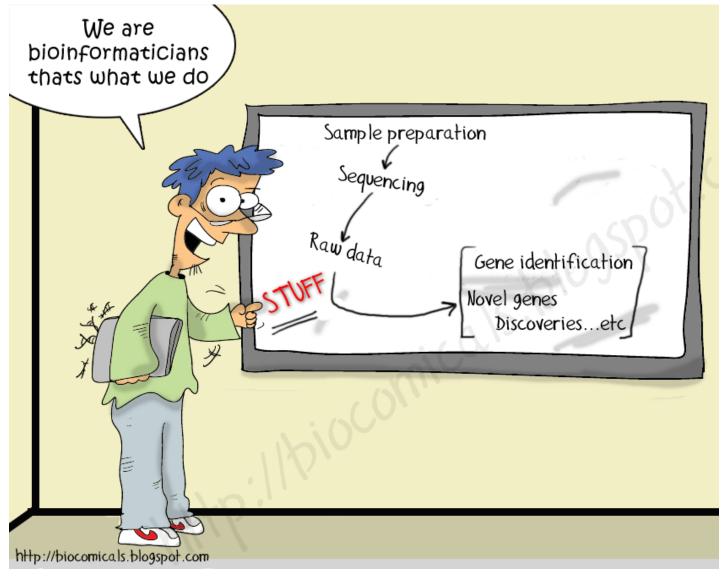
-5

Tumor vs Normal

TMEM213

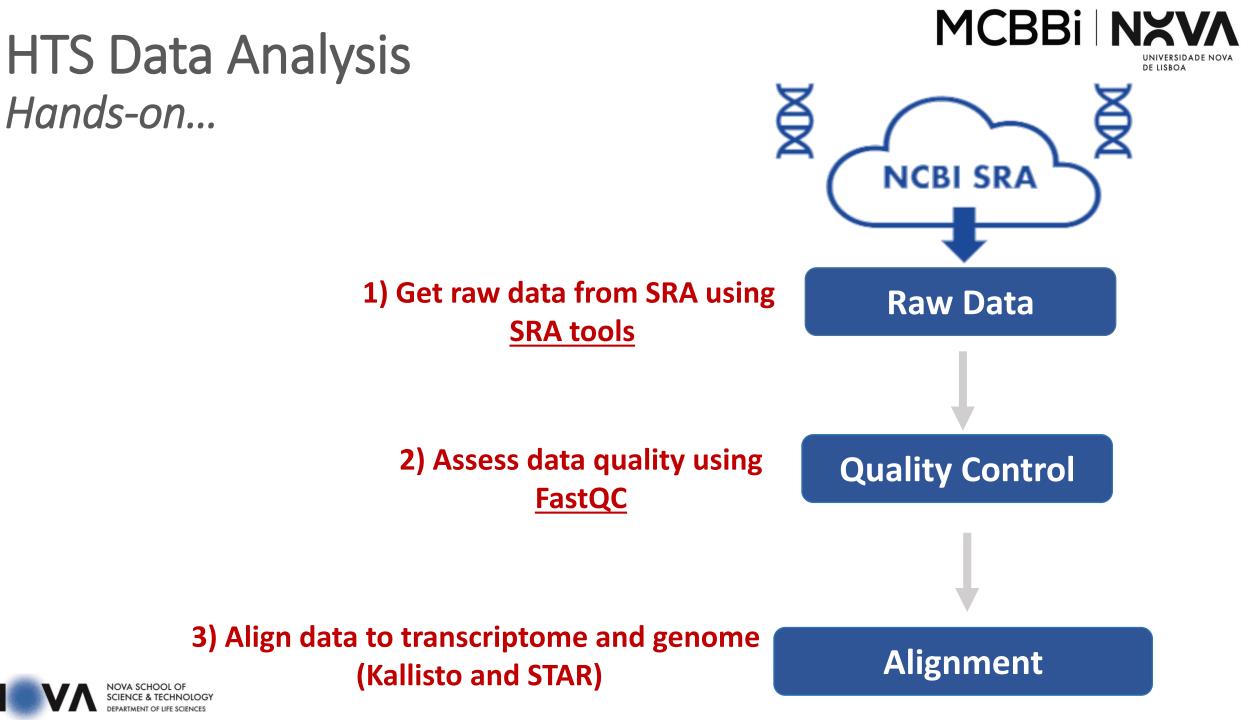
-10

NDUFA4L2


CA9

10

EGLN3 SLC16A3 ANGPTL4


5

Hands-On...

N