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Phylogenetic inference – what it is and why do we do it?

“The affinities of all the beings of the same class have sometimes been 
represented by a great tree. I believe this simile largely speaks the truth.” 

Charles Darwin, Origin of Species, 1859 

Evolution is descent with modification from a common ancestor

GENOMES EVOLUTION
to understand

to understand

Evolution of genome complexity

Evolution of individuals, cells, species…
Evolution of gene familiesPHYLOGENETIC INFERENCE!!



Phylogenetic inference – terminology

Internal nodes (these are hypothetical 
ancestrals of terminal nodes)Branches

Terminal leaf/node/species/OTU/taxon
(extant organisms)

Root/terminal node/ancestral node
MRCA

A B C D E
Topology

Bipartition: ABC|DE

A B C D E

((A,(B,C)),(D,E))

Newick format

A

B

C

D

E

rootroot

root

root



Question: 
we want to know how a particular group of species/organisms/cells relate to 
each other

Typical pipeline in Molecular Phylogenetics

1. Choose the molecular marker (genomic region or specific data type)
2. Get the sequences of that molecular marker for all terminals in the tree
3. Choose an optimality criterion and an algorithm to estimate the gene tree

1 gene à some genes à many genes à genomes

More genes à more resolution at different levels of the tree à higher support

In most analyses the implicit assumption is that all genes do in fact have the same 
gene tree, that these gene trees are congruent with and converge on the species tree

not always true!

Phylogenetic inference – typical pipeline



Phylogenetic inference – methods overview

COMPUTACIONAL METHOD

Clustering algorithmOptimality criterium
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MAXIMUM LIKELIHOOD
BAYESIAN METHODS

UPGMA
NEIGHBOR-JOININGMINIMUM EVOLUTION

Taxa Characters

Species A ATGGCTATTCTTATAGTACG
Species B ATCGCTAGTCTTATATTACA
Species C TTCACTAGACCTGTGGTCCA
Species D TTGACCAGACCTGTGGTCCG
Species E TTGACCAGTTCTCTAGTTCG

Taxa Distances
A     B     C     D     E 

Species A ----
Species B 0.23  ----
Species C 0.87  0.59  ----
Species D 0.73  1.12  0.17  ----
Species E 0.59  0.89  0.61  0.31  ----



Maximum Likelihood

Prob(obs|fair dice)

Prob (obs|non-fair dice) = 120 = 1

à The same observed result leads to very different likelihoods depending on 
the assumed model (hypothesis)

à The model that assumes “non-fair dice” is the one that gives higher 
probability of observing that result, and as such it is the most likely model.

observation hypothesis
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Maximum Likelihood of a Tree (topology & branch lengths)

Two assumptions:
1. Evolution in different sites is independent
2. Evolution in different lineages is independent

€ 

Prob(D |T) = Prob(D(i) |T)
i+1

m

∏

data

tree

L =

data at the ith site



x

z

C

w

C G

y

A
C

t1 t2

t6

t8

t3

t7

t4 t5

x

z

C

w

C G

y

A
C

t1 t2

t6

t8

t3

t7

t4 t5

 

( ) ( )åååå=
x y z w

i TwzyxGCCCAobTDob ,,,,,,,,PrPr )(

€ 

Prob(x)

€ 

Pr ob(y | x,t6 )

€ 

Prob(A | y, t1)

€ 

Prob(C | y, t2)

€ 

Prob(z | x, t8)

€ 

Prob(C | z,t3)

€ 

Prob(w | z,t7)

€ 

Prob(C |w,t4 )

€ 

Prob(G |w,t5)

Maximum Likelihood of a Tree (topology & branch lengths)
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For 1 nucleotide at ancestral 
position x, and for 1 tree

Probability of data at the ith site given a certain tree



Phylogenetic inference is a NP-complete problem where exhaustive searches for datasets 
of 10+ terminals are practically impossible à Heuristic methods

X
Local maximum

Local maximum

Hill-climbing algorithms

Phylogenetic tree space



NNI < SPR < TBR
• Branch swapping

• Multiple replicates with random 
starting points



Bootstrap resampling method used to estimate branch support on a phylogenetic tree.  
Provides an indication of the robustness (confidence) in each bipartition.

rat GAGGCTTATC
human GTGGCTTATC
turtle GTGCCCTATG
fruitfly CTCGCCTTTG
oak ATCGCTCTTG
duckweed ATCCCTCCGG

0123456789

Initial dataset

rat
human
turtle
fruit fly
oak
duckweed

Phylogenetic tree

Many more replicates

(normalmente 1000+)

rat GGAAGGGGCTTTTTA
human GGTTGGGGCTTTTTA
turtle GGTTGGGCCCCTTTA
fruitfly CCTTCCCGCCCTTTT
oak AATTCCCGCTTCCCT
duckweed AATTCCCCCTTCCCC

001122234556667
Pseudoreplicate 1

rat CCTTTTAAATTTTCC
human CCTTTTAAATTTTCC
turtle CCCCCTAAATTTTGG
fruitfly CCCCCTTTTTTTTGG
oak CCTTTCTTTTTTTGG
duckweed CCTTTCCCCGGGGGG

445556777888899

Pseudoreplicate 2

Phylogenetic

tree

Phylogenetic

tree

1000 
Phylogenetic 
trees

rat
human
turtle
fruit fly
oak
duckweed

Phylogenetic tree

100%
65%

55%



Bayes’ theorem

€ 

f (p |D) =
f (p) f (D | p)

f (D)

Posterior probability

Prior probability
Maximum 
likelihood

Data probability, sum of all (pi|D), 
normalizing constate that ensures 
that the posterior probability 
integrates to 1.

Rev. Thomas Bayes 
(1701-1761)



Rev. Thomas Bayes 
(1701-1761)

Bayesian phylogenetic inference

Given:
t = phylogenetic tree (topology + branch lengths) 
X = data (aligned molecular data)

The posterior probability 
of tree is:

€ 

f (τ i | X) =
f (X | τ i) f (τ i)

f (X | τ j ) f (τ j )
j=1

T

∑

1 tree

All possible
trees

Max. likelihhod

Typically, impossible to estimate. But by using MCMC chains to sample 
the posterior distribution we do not need to estimate this quantity

Prior probability
• Uniform dist – topology
• Exponential dist – branch lengths
• Gamma dist – rate variation
• Dirichlet dist – allele frequency



Markov Chain Monte Carlo sampling  (MCMC)

Strategy for running an MCMC:
1. Start at a random point
2. Make a small-scale change
3. Estimate the ratio (r) of the probabilities of the new and the original state:

If r > 1 -> accept change
If r < 1 -> accept change with probability r

4. Back to step 2

Not a “hill-climbing” method!
MCMC approximates                      by sampling a high number of trees       from the posterior distribution. The trees 
with higher probabilities are the ones most likely to be sampled during the MCMC sampling process. Therefore, 
MCMC focuses most of the sampling effort on sampling the distribution of interest - the proportion of time that 
MCMC method samples a give region of the parameter space is proportional to the posterior distribution of 
that region.€ 
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Metropolis-Hasting decision criteria:
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always accept

accept sometimes
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MCMC …

chain generation
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20% 48% 32%

adapted from Ronquist and P. Lewis

Uniform sampling Random sampling Importance sampling

adapted from J. Felsenstein



burn-in

Stationary phase

The Trace Plot

Assessing Convergence:

1. Check for the plateau in the trace plot
2. Look at sampling behavior within the run (autocorrelation times, effective sample size etc)
3. Compare independent runs with different, randomly chosen starting points



List of sampled topologies

€ 

τ *
Results are summarized with 
credibility intervals and majority 
consensus trees

Summarizing sampled topologies

The posterior probability of a clade is simply the sum of the posterior 
probabilities of all trees that contain that clade.

A majority rule consensus tree is formed by
combining all the clades with the highest posterior 
probability that are compatible
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Example:
• A credible 95% interval for these topologies includes trees 14 and 8 trees -> f(X|ti)=0.956
• The probability of the Human-Chimp clade is T13 + T14 + T15 = 0.932



Mixing refers to how often proposed changes to parameters are accepted during the MCMC run. High acceptance rate 
means chain is making too small moves. Low acceptance rate means proposed changes are too large. 
Optimal acceptance rate: 20-60 percent.
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Too modest proposals; Acceptance rate too high
Poor mixing

Too bold proposals; Acceptance rate too low
Poor mixing

Moderately bold proposals; Acceptance rate intermediate
Good mixing

The time it takes for a MCMC to obtain an adequate sample of the posterior depends on its mixing behavior



hot chain

Metropolis-coupled Markov chain Monte Carlo aka (MC)3

Slides from Ronquist

cold chain



unsuccessful swap

cold chain

hot chain



cold chain

hot chain

successful swap



Inference of large phylogenies

Liu et al 2015

• Large datasets
• Many calculations
• Complex data



Inference of large phylogenies

• The implicit assumption is that all genes do in fact have 
the same gene tree, that these gene trees are congruent 
with and converge on the species tree

• The use of many genes eliminates stochastic error (e.g. 
insufficient sequence length) and systematic error
(some gene trees my depart from model assumptions)

• If we add extra requirements such as single copy 
orthologs and core genes then we might also 
reduce/eliminate biological causes of incongruence 
between gene tree and species tree 



Things to be aware of… analysis of large concatenated datasets may lead to 
misleading bootstrap support 

Rokas and Carroll (2006) Plos Biol.



Things to be aware of… sometimes all gene trees differ from 
each other and from the concatenation phylogeny!!

Salichos and Rokas Nature 2013



Some recipes for handling incongruence in concatenation 
analysis:
• Remove all sites containing gaps
• Remove fast-evolving or unstable species
• Selecting genes that recover specific clades
• Selecting the most slow-evolving genes
• Selecting genes whose bootstrap consensus trees have high average support
• Multiple searches using distinct starting trees

Strategy:
• Apply different phylogenetic methods (different optimality criteria/approaches)
• Assess conflict across gene trees
• Investigate alternative hypotheses for branches showing conflict/assess sensitivity of 

results
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Software
Iqtree http://www.iqtree.org/
MrBayes http://mrbayes.scs.fsu.edu
RaxML https://cme.h-its.org/exelixis/web/software/raxml/

http://www.iqtree.org/doc/
http://mrbayes.scs.fsu.edu
https://cme.h-its.org/exelixis/web/software/raxml/

