
udocker

Part 1 - Introduction
https://github.com/indigo-dc/udocker

Mario David david@lip.pt, Jorge Gomes jorge@lip.pt

1

https://github.com/indigo-dc/udocker
mailto:david@lip.pt
mailto:jorge@lip.pt

Scientific Computing
Challenges I
Running applications across infrastructures
often requires considerable effort

Heterogeneous Hardware:

Several computing systems

Laptops, Desktops, Farms, Cloud, HPC

Multiple OSes and distributions:

Several operating systems

Linux flavors, Distribution versions

2

Scientific Computing
Challenges II

Software Environments:

Specific computing environments.

Compilers, Libraries, Customizations,
Drivers etc.

Applications:

Multiple software codes often combined.

Issues:

Portability, Maintainability,
Reproducibility.

3

Using containers for applications I
Encapsulation:

Applications, dependencies, configurations everything packed together.

Enables portability across heterogeneous Linux systems.

Easier distribution and sharing of ready to use software.

Efficiency:

One single kernel, buffers etc shared by many applications.

Performance and resource consumption similar to host execution.

Take advantage of newer more optimized libraries and compilers.

4

Using containers for
applications II
Reproducibility:

The whole application and run-time
environment is in the container.

Can be easily stored for later replay, reuse
and preservation.

5

Using containers for
applications III
Maintainability:

Easier application maintenance,
distribution and deployment.

No need to support applications across
multiple OS distributions.

Independance from software changes at the
host level.

6

udocker - origin
Need for a consistent portable way of running applications.

Running applications across different distributions and run-time environments.

udocker began to be developed in 2015 in the Indigo-DataCloud project.

Proof of concept for running docker containers as a regular user.

Focused on running scientific applications in Linux systems.

Batch or Interactive, HTC or HPC, across sites in grid infrastructures.

7

Containers for batch processing - I
Challenges of running containers (docker) on batch systems:

Integration with the batch system (how to start/stop containers, etc.).

Respect batch system policies (such as quotas, time and resource limits).

Respect batch system actions (job management integration delete/kill).

Collect accounting (tight integration).

8

Containers for batch processing - II
Can we execute in a more simple way?

Can we download container images (for instance, from Dockerhub or other
registries)?

Can we run without a layered filesystem?

Can we run without namespaces?

Can we run without other complex kernel functionalities ?

Can we run as a regular user without privileges?

9

Containers for batch processing - III
When udocker started to be developed these were major limitations:

Now other tools can also address, at least partially, some of these issues.

singularity/apptainer, podman etc..

Yet they depend on kernel functionalities, that may not be available
everywhere.

10

udocker : Introduction - I
udocker can run applications encapsulated in docker containers Without:

Using docker.

Requiring (root) privileges.

System administrators intervention.

Additional system software.

Requiring Linux namespaces.

Everything runs in user space:

As a regular user without privileges.

Subjected to the normal process controls and accounting.

Both in interactive or batch systems.

11

udocker : Introduction -
II

udocker is open source.

Developed under the Indigo-Datacloud,
DEEP Hybrid-Datacloud, EOSC-Synergy,
BigHPC
and DT-Geo projects.

Github repository:
https://github.com/indigo-dc/udocker.

Documentation: https://indigo-
dc.github.io/udocker/.

12

https://github.com/indigo-dc/udocker
https://indigo-dc.github.io/udocker/
https://indigo-dc.github.io/udocker/

udocker advantages: Deployment I
udocker is meant to be deployed and used by the end-user:

Does not require root privileges.

Does not require system administrator intervention.

All operations can be performed in user space and in user accessible
directories.

Deployed by default in the user $HOME directory.

Containers are in the user $HOME directory or other user chosen location.

13

udocker advantages: Deployment II
udocker does not require compilation by the user:

Written in Python plus some binaries.

Has a minimal set of dependencies.

Required binaries are provided statically compiled.

udocker deployment:

Just copy and untar into the user $HOME directory.

Ideal to execute containers across different sites and types of resources and
infrastructures.

You can deploy udocker on the system where you run.

14

udocker advantages: Execution I
udocker integrates several execution engines:

Allows execution using multiple different approaches.

Allows execution with and without using Linux namespaces.

Integrates several tools suitable to execute containers.

Makes these tools easier to use across systems.

udocker can be submitted together with a batch job:

(Just fetch or ship the udocker tarball with the job.)

15

udocker advantages: Execution II
udocker user interface:

Commands, syntax and logic are similar or even the same as docker CLI.

udocker empowers users to use containers:

Ideal for heterogeneous computing environments.

16

udocker : Command Line Interface
udocker is mainly a run-time to execute docker containers:

clone export help images import

inspect install load login logout

mkrepo name protect ps pull

rm rmi rmname search setup

showconf unprotect verify version create

run save

By design udocker does not have container creation functionality.
Containers can be created with other tools.

17

udocker : How does it work...

18

Programing languages and OS
udocker is implemented:

Python

the engines and other tools shipped with udocker are binaries:

C , C++, go

Can run:

CentOS 7, RHEL8, RHEL9 (compatible distros)

Ubuntu >= 16.04

Any distro that supports python 2.7 and >= 3.6

19

Components - I
The udocker Python code (this is what you need to fetch)

Command line interface.

Dockerhub API.

Container and image handling: import, load, save and export.

Local images repository.

Interface with the execution engines.

20

Components - II
udocker tools:

Pulled and installed upon first invocation of udocker .

Set of binary executables and libraries that implement the engines.

Supporting different OSes and hardware architectures.

Executables: proot (Pn), runc (Rn), crun (Rn) and patchelf (Fn).

Libraries: fakechroot (Fn).

21

udocker in 4 steps - I
Step 1 - Installation:

Get the udocker tarball using curl , wget or a browser.

Extract the content of the tarball.

No need to compile software.

The first time udocker is run it will fetch the required binaries.

22

udocker in 4 steps - II
Step 2 - Get container images:

Pull containers from docker compatible repositories.:

udocker pull

Load and save in docker and OCI formats:

udocker load

udocker save

Import and export tarballs:

udocker import

udocker export

23

udocker in 4 steps - III
Step 3 - Create from images:

Create the container directory tree from the image:

udocker create

Step 4 - Execute containers:

Run using several execution methods:

udocker run

24

udocker in 4 steps - IV
The steps to fetch and execute containers are important:

udocker pull <IMAGE>

udocker create <IMAGE>

udocker run <CONTAINER-ID-OR-NAME>

udocker run <CONTAINER-ID-OR-NAME>

udocker run <CONTAINER-ID-OR-NAME>

The created container can be run as many times as you wish.

You may call udocker run directly but this will create a new CONTAINER every-
time.

Will be slow and occupy much more space.
25

udocker is an integration tool

26

udocker : pull - Images I
Docker images are composed of:

Metadata describing the images content and how to run.

Multiple file-system layers stored as tarballs.

udocker pulls the metadata and layers:

Using the DockerHub REST API.

Image metadata is parsed to identify the layers.

Layers are stored in the user home directory under
${UDOCKER_DIR}/.udocker/layers

Image information with links to the layers is under
${UDOCKER_DIR}/.udocker/repos

27

udocker : pull - Images II

28

udocker : Create containers - I
Containers are produced from the images in a process called flattening.

Each image layer is extracted on top of the previous.

UnionFS Whiteouts are applied before each layer extraction.

Protection changes are applied to make files accessible.

The resulting directory tree is stored under ${UDOCKER_DIR}/.udocker/containers

Accessing files is easy:

just cd into ${UDOCKER_DIR}/.udocker/containers/CONTAINER-ID/ROOT .

The creation can be slow depending on underlying filesystem (e.g. Lustre, GPFS):

Alternative use the /tmp or some partition local to the host.

29

udocker : Create containers - II

30

udocker : Run container

31

udocker : Execution engines I
Like in other container tools execution is achieved by providing chroot like
functionality.

udocker supports several techniques to achieve the equivalent to a chroot
without using privileges.

These techniques can be selected per container via execution modes implemented
by execution engines.

32

udocker : Execution engines II
Mode Base Description

P1 PRoot PTRACE accelerated (with SECCOMP filtering): DEFAULT

P2 PRoot PTRACE non-accelerated (without SECCOMP filtering)

R1 runC rootless unprivileged using user namespaces

R2 runC rootless unprivileged using user namespaces + P1

R3 runC rootless unprivileged using user namespaces + P2

F1 Fakechroot with loader as argument and LD_LIBRARY_PATH

F2 Fakechroot with modified loader, loader as argument and LD_LIBRARY_PATH

F3 Fakechroot modified loader and ELF headers of binaries + libs changed

F4 Fakechroot modified loader and ELF headers dynamically changed

S1 Singularity where locally installed using chroot or user namespaces

33

Selection in terms of performance
Mode Base Description

P1 PRoot System call intensive applications may suffer degradation

P2 PRoot
Same limitations as P1 apply. All system calls are traced causing higher overheads

than P1

R1 runC Same performance as namespace based applications

R2 runC Only for software installation and similar. Same performance as P1

R3 runC Only for software installation and similar. Same performance as P2

F1 Fakechroot
All Fn modes have similar performance during execution. Frequently the Fn modes

are the fastest

F2 Fakechroot Same as F1

F3 Fakechroot Same as F1. Setup can be very slow

F4 Fakechroot Same as F1. Setup can be very slow

S1 Singularity Similar to Rn

34

Selection in terms of interoperability I
Mode Base Description

P1 PRoot
PTRACE + SECCOMP requires kernel >= 3.5. Can fall back to P2 if SECCOMP is

unavailable

P2 PRoot
Runs across a wide range of kernels even old ones. Can run with kernels and libraries

that would fail with kernel too old

R1 runC User namespace limitations apply

R2 runC
User namespace limitations apply. Same limitations as P1 also apply, this is a nested

mode P1 over R

R3 runC
User namespace limitations apply. Same limitations as P2 also apply, this is a nested

mode P2 over R

35

Selection in terms of interoperability II
Mode Base Description

F1 Fakechroot
May escape and load host libraries. Requires shared library compiled against same

libc as in container

F2 Fakechroot Same as F1

F3 Fakechroot
Requires shared library compiled against same libc as in container. Binary

executables and libraries get tied to the user HOME pathname

F4 Fakechroot Same as F3. Executables and libraries can be compiled or added dynamically

S1 Singularity
Not part of udocker must already exist on the system, may use user namespaces or

chroot

36

udocker : Running applications ...

37

udocker & Lattice QCD
OpenQCD is a very advanced code to run
lattice simulations.

Scaling performance as a function of the cores
for the computation of application of the Dirac
operator to a spinor field.

Using OpenMPI, udocker in P1 mode.

38

udocker &
Molecular
dynamics
Gromacs is widely used both in
biochemical and non-biochemical
systems.

In this comparison Gromacs was run
using CUDA and OpenMP:

udocker using P mode has lower
performance with Gromacs.

udocker using F mode has same or
better performance as Docker. 39

udocker & Phenomenology I
MasterCode connects several complex codes:

Hard to deploy.

Scanning through large parameter spaces.

High Throughput Computing.

C++, Fortran, many authors, legacy code.

40

udocker & Phenomenology II
Performance Degradation (udocker in P1 mode)

Environment Compiling Running

HOST 0% 0%

DOCKER 10% 1.0%

udocker 7% 1.3%

VirtualBox 15% 1.6%

KVM 5% 2.6%

41

Thank you!

Questions ?
udocker@lip.pt

42

mailto:udocker@lip.pt

Backup slides

43

Other container technologies
Singularity/Apptainer (LBL) https://apptainer.org/ - udocker currently supports it
as execution mode.

Charliecloud (LANL) https://charliecloud.io/.

Shifter (NERSC) https://docs.nersc.gov/development/containers/shifter/how-to-
use/.

Podman (RedHat) https://www.redhat.com/en/topics/containers/what-is-podman.

44

https://apptainer.org/
https://charliecloud.io/
https://docs.nersc.gov/development/containers/shifter/how-to-use/
https://docs.nersc.gov/development/containers/shifter/how-to-use/
https://www.redhat.com/en/topics/containers/what-is-podman

