coadop ©

INDIGO - DataCloud  Hybrid DataCloud EOSC-hub

Part 1 - Introduction

https://github.com/indigo-dc/udocker

Mario David david@lip.pt, Jorge Gomes jorge@lip.pt

L 1 P uUpocKkERr

Fundagio
para a Ciéncia

. TE o -
:  Lish@20 2020 3620 ==

20 COHMPE

Q% HPC &

(OO


https://github.com/indigo-dc/udocker
mailto:david@lip.pt
mailto:jorge@lip.pt

Scientific Computing
Challenges |

Running applications across infrastructures
often requires considerable effort

e Heterogeneous Hardware:
o Several computing systems

o Laptops, Desktops, Farms, Cloud, HPC
e Multiple OSes and distributions:

o Several operating systems

o Linux flavors, Distribution versions




Scientific Computing
Challenges li

e Software Environments:
o Specific computing environments.
o Compilers, Libraries, Customizations,
Drivers etc.
e Applications:

o Multiple software codes often combined.

e Issues:

o Portability, Maintainability,
Reproducibility.



Using containers for applications |

Encapsulation:

e Applications, dependencies, configurations everything packed together.
e Enables portability across heterogeneous Linux systems.

e Easier distribution and sharing of ready to use software.
Efficiency:

e One single kernel, buffers etc shared by many applications.
e Performance and resource consumption similar to host execution.

e Take advantage of newer more optimized libraries and compilers.



Using containers for

o ]
applications lI Separate
Environment
Reproducibilit o —
eproducibility: a
" ' Aop 1|} LABRIL , Ao
e The whole application and run-time : ! ~ Container
_ = _ Libs 1 = Libs1 | Libs 1
environment is in the container. 0 —
e Can be easily stored for later replay, reuse
and preservation. L Host
Hardware




Using containers for
applications lli

Maintainability:

e Easier application maintenance,
distribution and deployment.

e No need to support applications across
multiple OS distributions.

e Independance from software changes at the
host level.

Separate

Environment

il

App 1

App 1

Libs 1

Linux kernel

Lape
[Hes 1)

Hardware

Libs 1

—
-

- Container

- Host




origin

e Need for a consistent portable way of running applications.

o Running applications across different distributions and run-time environments.

o began to be developed in 2015 in the Indigo-DataCloud project.

o Proof of concept for running docker containers as a regular user.

e Focused on running scientific applications in Linux systems.

o Batch or Interactive, HTC or HPC, across sites in grid infrastructures.



Containers for batch processing - |

e Challenges of running containers (docker) on batch systems:
o Integration with the batch system (how to start/stop containers, etc.).
o Respect batch system policies (such as quotas, time and resource limits).
o Respect batch system actions (job management integration delete/kill).

o Collect accounting (tight integration).



Containers for batch processing - I

e Can we execute in a more simple way?

o Can we download container images (for instance, from Dockerhub or other
registries)?

o Can we run without a layered filesystem?
o Can we run without namespaces?
o Can we run without other complex kernel functionalities ?

o Can we run as aregular user without privileges?



Containers for batch processing - Il

e When started to be developed these were major limitations:
o Now other tools can also address, at least partially, some of these issues.
= singularity/apptainer, podman etc..

o Yet they depend on kernel functionalities, that may not be available
everywhere.

10



S : Introduction - |

o can run applications encapsulated in docker containers Without:
o Using docker.
o Requiring (root) privileges.
o System administrators intervention.

o Additional system software.

o Requiring Linux namespaces.

e Everything runs in user space:
o As aregular user without privileges.
o Subjected to the normal process controls and accounting.

o Both in interactive or batch systems.

11



IS : Introduction -
1l

o is open source.

e Developed under the Indigo-Datacloud,
DEEP Hybrid-Datacloud, EOSC-Synergy,
BigHPC
and DT-Geo projects.

e Github repository:
https://github.com/indigo-dc/udocker.

e Documentation: https://indigo-
dc.github.io/udocker/.

A basic user

udocker documentation

tool to execute simple docker containers in batch or interactive systems without root privileges.

View on GitHub

udocker documentation
e |nstallation manual

* User manual
* Reference card

udocker is maintained by indigo-dc.
This page was generated by GitHub Pages.

12


https://github.com/indigo-dc/udocker
https://indigo-dc.github.io/udocker/
https://indigo-dc.github.io/udocker/

advantages: Deployment |

o is meant to be deployed and used by the end-user:

@)

@)

@)

Does not require root privileges.
Does not require system administrator intervention.

All operations can be performed in user space and in user accessible
directories.

Deployed by default in the user directory.

Containers are in the user Eil3 directory or other user chosen location.

13



advantages: Deployment ||

o does not require compilation by the user:
o Written in Python plus some binaries.

o Has a minimal set of dependencies.

o Required binaries are provided statically compiled.

o deployment:
o Just copy and untar into the user directory.

o |deal to execute containers across different sites and types of resources and
infrastructures.

o You can deploy on the system where you run.

14



advantages: Execution |

° integrates several execution engines:

o Allows execution using multiple different approaches.

o Allows execution with and without using Linux namespaces.

o Integrates several tools suitable to execute containers.

o Makes these tools easier to use across systems.

o can be submitted together with a batch job:
o (Just fetch or ship the tarball with the job.)

15



advantages: Execution I
o user interface:

o Commands, syntax and logic are similar or even the same as docker CLI.

o empowers users to use containers:

o |deal for heterogeneous computing environments.

16



EI8d : Command Line Interface

is mainly a run-time to execute docker containers:

clone export help images | import
inspect install load login logout
mkrepo name protect | ps pull
rm rmi rmname | search |setup
showconf | unprotect | verify version | create
run save

By design does not have container creation functionality.
Containers can be created with other tools.



LTS3 : How does it work...

18



Programing languages and OS
o is implemented:

o Python
e the engines and other tools shipped with are binaries:
o C,C++,go

e Canrun:
o CentOS 7, RHELS8, RHEL9? (compatible distros)

o Ubuntu >=16.04
o Any distro that supports python 2.7 and >= 3.6

19



Components - |

e The Python code (this is what you need to fetch)
o Command line interface.

o Dockerhub API.
o Container and image handling: import, load, save and export.
o Local images repository.

o |Interface with the execution engines.

20



Components - |
o [EREIEY tools:

@)

@)

@)

@)

O

Pulled and installed upon first invocation of [IlHaaad-

Set of binary executables and libraries that implement the engines.
Supporting different OSes and hardware architectures.
Executables: proot (Pn), runc (Rn), crun (Rn) and patchelf (Fn).

Libraries: fakechroot (Fn).

21



in 4 steps - |

Step 1 - Installation:

e Getthe tarball using [Ei&, or a browser.

e Extract the content of the tarball.

e No need to compile software.
e The first time is run it will fetch the required binaries.

22



in 4 steps - I

Step 2 - Get container images:

e Pull containers from docker compatible repositories.:

<l udocker pull
e Load and save in docker and OCI formats:
oM udocker load

oMl udocker save

e Import and export tarballs:

<M udocker import

< udocker export

23



in 4 steps - 11

Step 3 - Create from images:

e Create the container directory tree from the image:

oM udocker create

Step 4 - Execute containers:

e Run using several execution methods:

ol udocker run

24



in 4 steps - IV

The steps to fetch and execute containers are important:

L udocker pull <IMAGE>

Ll udocker create <IMAGE>

Ll udocker run <CONTAINER-ID-OR-NAME>
L udocker run <CONTAINER-ID-OR-NAME>
Ll udocker run <CONTAINER-ID-OR-NAME>

The created container can be run as many times as you wish.

e You may call directly but this will create a new CONTAINER every-
time.

e Will be slow and occupy much more space.

25



is an integration tool

simple

pathname translation

NO namespaces
no chroot
no mounts

create

shared lib
(fakechroot)

user namespaces
(runc/crun)

store images

read layers

namespaces

(singularity)

- == -

container
layers

o e owm

"'"ll---ll"">|
1

1

-

——---

ooy

container 1
dirtree 1|

-._--ﬁ’

26



IS : pull - Images |

e Docker images are composed of:

o Metadata describing the images content and how to run.

o Multiple file-system layers stored as tarballs.

o pulls the metadata and layers:
o Using the DockerHub REST API.

o Image metadata is parsed to identify the layers.

o Layers are stored in the user home directory under

${UDOCKER_DIR}/.udocker/layers

o Image information with links to the layers is under

S{UDOCKER_DIR}/.udocker/repos

27



G : pull - Images

.udocker

repos

image/tag JE R R

directories - structure

= = = = goft links

28



LI C4: Create containers - |

e Containers are produced from the images in a process called flattening.
o Each image layer is extracted on top of the previous.
o UnionFS Whiteouts are applied before each layer extraction.

o Protection changes are applied to make files accessible.

o The resulting directory tree is stored under FEREUL <3588 VARTT [ofel /I AL k- E gt

e Accessing files is easy:

VIS R olo MIg) ol $ {UDOCKER_DIR}/.udocker/containers/CONTAINER-ID/ROOT]

e The creation can be slow depending on underlying filesystem (e.g. Lustre, GPFS):

o Alternative use the /tmp or some partition local to the host.

29



imagel/tag

[

manifest

[

TAG

[

vl or v2

directories - structure

[

files

)

= = = = goft links

.udocker

EIY8d: Create containers - I

sha256:08¢c ]

sha256:215 ]

sha256:de3 ]

Extract

containers

a’b2e256

-)| mycontainer |

—)[ imagerepo.name ]

30



R4 : Run container

Execution: chroot-like. D64

user/

udocker directory tree
$HOME/.udocker

» .udocker/

.
containers/

a’b2e256-e772-3f49-9052-7de4 733fff4d/

/

becomes the new root
for container processes




I d : Execution engines |

e Like in other container tools execution is achieved by providing like
functionality.

o supports several techniques to achieve the equivalent to a
without using privileges.

e These techniques can be selected per container via execution modes implemented

by execution engines.

32



L8 : Execution engines II

Mode Base Description
P1 PRoot PTRACE accelerated (with SECCOMP filtering): DEFAULT
P2 PRoot PTRACE non-accelerated (without SECCOMP filtering)
R1 runC rootless unprivileged using user namespaces
R2 runC rootless unprivileged using user namespaces + P1
R3 runC rootless unprivileged using user namespaces + P2
F1 Fakechroot with loader as argument and LD_LIBRARY_PATH
F2 Fakechroot | with modified loader, loader as argument and LD_LIBRARY_PATH
F3 Fakechroot modified loader and ELF headers of binaries + libs changed
F4 Fakechroot modified loader and ELF headers dynamically changed
S1 Singularity where locally installed using chroot or user namespaces

33



Selection in terms of performance

Mode Base Description
P1 PRoot System call intensive applications may suffer degradation
P2 PRoot Same limitations as P1 apply. All system calls are traced causing higher overheads
than P1
R1 runC Same performance as namespace based applications
R2 runC Only for software installation and similar. Same performance as P1
R3 runC Only for software installation and similar. Same performance as P2
F1 Eakechroot All Fn modes have similar performance during execution. Frequently the Fn modes
are the fastest
F2 | Fakechroot Same as F1
F3 Fakechroot Same as F1. Setup can be very slow
F4 | Fakechroot Same as F1. Setup can be very slow
S1 Singularity Similar to Rn

34



Selection in terms of interoperability |

Mode Base Description
PTRACE + SECCOMP requires kernel >= 3.5. Can fall back to P2 if SECCOMP is
P1 PRoot .
unavailable
P2 | PRoot Runs across a wide range of kernels even old ones. Can run with kernels and libraries
that would fail with kernel too old
R1 runC User namespace limitations apply
User namespace limitations apply. Same limitations as P1 also apply, this is a nested
R2 runC
mode P1 over R
User namespace limitations apply. Same limitations as P2 also apply, this is a nested
R3 runC
mode P2 over R

35



Selection in terms of interoperability I

Mode Base Description
F1 Fakechroot May escape and load host Iibrari.es. Reguires shared library compiled against same
libc as in container
F2 Fakechroot Same as F1
£3 Fakechroot Requires shared IibrarY com.piled ag.ainst same libc as in container. Binary
executables and libraries get tied to the user HOME pathname
F4 | Fakechroot Same as F3. Executables and libraries can be compiled or added dynamically
1 | Singularity Not part of must already existcﬁpotohte system, may use user namespaces or

36



LS : Running applications ...

37



& Lattice QCD

OpenQCD is a very advanced code to run
lattice simulations.

Scaling performance as a function of the cores
for the computation of application of the Dirac
operator to a spinor field.

Using OpenMP], in P1 mode.

..

~1
=]
(=]
[=]

Q- -Q Native Altamira (Centos 6.9)
& > udocker Altamira (Centos 7.3)
- -0 Native CESGA (Centos 6.7)
% - ¥ udocker CESGA (Centos 7.3)
4¢3 udocker CESGA (Centos 6.9)

MFlops/sec

I

Number of cores




udocker B

Molecular
dynamics

Gromacs is widely used both in
biochemical and non-biochemical
systems.

In this comparison Gromacs was run
using CUDA and OpenMP:

o using P mode has lower
performance with Gromacs.

° using F mode has same or
better performance as Docker.

Ratio Run time

1.25 1

1.20 ¢

-
-
i

-
=
o

1.05

1.00

0.95 -

Case = gromacs
GPU = QK5200

F—

I

m Ratio

i

Phys-C7

Dock-C7

Dock-Ul6

UDockP1-C7 UDockP1-Ul6 UDockF3-C7 UDockF3-Ul6

Machine

39



& Phenomenology |

MasterCode connects several complex codes:

e Hard to deploy.
e Scanning through large parameter spaces.
e High Throughput Computing.

e C++, Fortran, many authors, legacy code.

40



& Phenomenology II

Performance Degradation (udocker in P1 mode)

Environment Compiling Running

HOST 0% 0%
DOCKER 10% 1.0%
udocker 7% 1.3%

VirtualBox 15% 1.6%

KVM 5% 2.6%

41



Thank you!

Questions ?

udocker@lip.pt

L I P upocKker

e CSMPETE @
mitee  Lisb@0™ T 2020 3620 == ‘@ \

42


mailto:udocker@lip.pt

Backup slides

43



Other container technologies

Singularity/Apptainer (LBL) https://apptainer.org/ - currently supports it
as execution mode.

Charliecloud (LANL) https://charliecloud.io/.

Shifter (NERSC) https://docs.nersc.gov/development/containers/shifter/how-to-
use/.

Podman (RedHat) https://www.redhat.com/en/topics/containers/what-is-podman.

44


https://apptainer.org/
https://charliecloud.io/
https://docs.nersc.gov/development/containers/shifter/how-to-use/
https://docs.nersc.gov/development/containers/shifter/how-to-use/
https://www.redhat.com/en/topics/containers/what-is-podman

