

FastCompChemic UNLOCKING QUANTUM POTENTIAL

GET STARTED →

Founder

Quantum Chemist

Post-Doc Researcher
University of Manchester

Research
Fellow CDC, USA

Faculty position
School of Pharmacy
University of Maryland
Baltimore, USA

> 15.000 citations on Google Scholar

Relevant publications

SPRINGER NATURE

Current Focus

BRINGING QUANTUM MECHANICS TO DRUG-DISCOVERY

Quantum Chemistry

Artificial Intelligence

Momentous Change

April 10, 2025

Toxicology Screening

Addressing current shortcomings

Disruptive Innovation

E-Signs (Electronic Fingerprints)

- ✓ A new type of descriptor, totally based on quantum mechanics;
- Uses **Artificial Intelligence** to relate the ESigns to toxicity;
- Can cover the whole chemical space;
- Relies on a small number of parameters that are easily interpretable.

Toxicology Screening

ROADMAP for Collaborative Development

APPROVED EC GRANT

One of the 57 projects selected, out of 858 applicants

FastCompChem retains commercial rights

Renowned Academic Partners

Maximize Use of HPC

Reactivity studies of well-defined organic reactions (ex. Michael additions)

Perturbation studies of intermomecular forces

Ingenuity in the theoretical approaches: avoidance of costly and hard to define chemical structures (ex. transition states)

Application to thousands of compounds

Reliance on common QM software: Gaussian, PySCF and MOPAC

FastCompChem's HPC

SIMPLICITY AND COST EFFECTIVENESS

- Ocompute nodes with AMD Zen4 Epyc 9754 (128 cores / 256 threads per CPU)
 - Currently Zen5 cores
- Small 258 GB memory per node (QM calculations as we use have small memory requirements)
- 4U nodes to maximize use of commodity hardware (ex. PSU) and air cooling
- Future scalability, SLURM, Ubuntu Server

Difficulties

LACK OF QUALIFIED PERSONNEL IN QUANTUM CHEMISTRY

- No active research in Quantum Chemistry in Portugal
- Low attractiveness for northern European scientists
- Difficulty in processing immigration VISAs

Core Team

PEDRO LOPES, PhD
Founder & CSO

QUANTUM
CHEMIST

VÍTOR CRESPO

CEO

MANAGEMENT &
VENTURE BUILDING

BEATRIZ COSTA, MSC
CTO
COMPUTER SCIENCE
AND AI ENGINEER

SOFIA ALMEIDA, MSC
Intern
CHEMIOINFORMATICS
ANALYST